Tetrahedron Letters, Vol.24, No.48, pp 5347-5350, 1983 0040-4039/83 \$3.00 + .00 Printed in Great Britain ©1983 Pergamon Press Ltd.

STRUCTURE DETERMINATION OF A TRANS-OCTAHYDROINDOLE DERIVATIVE OBTAINED BY CONSECUTIVE COUPLING OF A B-ACETAMIDO RADICAL WITH α-CHLOROACRYLONITRILE AND CYCLISATION

R. Henning⁺, H. Urbach and E. F. Paulus Hoechst AG, Pharma Synthese and Department of Applied Physics 6230 Frankfurt/Main 80

Summary: The determination of the structure of 1-acetyl-octahydroindole-2carbonitrile by NMR spectroscopy, X-ray diffraction and computerized conformational analysis is described.

We have prepared 1-acetyl-octahydroindole-2-carbonitrile ($\underline{1}$) by acetamidomercuration of cyclohexene, followed by reductive coupling of the mercurial with α -chloroacrylonitrile and ring closure under basic conditions ¹⁾.

i) CH_3CN , $Hg(NO_3)_2$, $20^{\circ}C$, then NaCl; ii) $CH_2=C(CN)Cl$, NaBH₄, EtOH, - $15^{\circ}C \longrightarrow + 15^{\circ}C$; iii) NaH, DMF, $0^{\circ}C$

From mechanistic considerations one would assume that the relative configuration of the three asymmetric centers at C 01, C 03 and C 04 (numbering of Fig. 1, see below) should be as shown in $\underline{1}$, i.e. having a trans ring juncture and cis hydrogen atoms at C 01 and C 04.

The hydrogen atom at C 01 (H 011) gives rise to a sharp doublet at $\delta = 4.90$ ppm in the 270 MHz ¹H NMR spectrum at 100°C in DMSO-d₆ (These conditions were used to eliminate complications due to the existence of rotamers at 25°C). This can be attributed to a dihedral angle close to 90° between this hydrogen and hydrogen H 021 at C 02²). The trans connection of the rings could not be proven from the NMR spectrum ³⁾.

We then applied the SCRIPT program developped by Cohen $^{4)}$ to our problem. This program allows the automatic generation of energy minimized conformers from a set of topological and geometric parameters using a strain energy minimization criterion. We could show, that only in the configuration shown in <u>1</u> conformers with dehedral angles close to 90[°] between H O11 and H O21 or H O22 could exist ⁵⁾.

Ultimate structure proof came from X-ray analysis ⁶⁾. Single crystals of $\underline{1}$ were obtained from ethyl acetate. The compound crystallizes in the noncentrosymmetric space group P n a 2₁ with 4 molecules in the unit cell. The cell dimen**sions** are: a = 11.414 Å, b = 14.179 Å, c = 6.402 Å, V = 1036.1 Å³, D_m = 1.28 g/cm³, D = 1.232 g/cm³. In all, 1377 unique reflections were used in the analysis, the structure was refined to a weighted R-value of 0.034. The coordinates of the atoms and their isotropic temperature coefficients are listed in the table. An ORTEP plot and a view of the crystal lattice along the crystallographic c-axis showing 4 unit cells are shown in Fig. 1 and 2.

Table Coordinates and Isotropic Temperature Coefficients of the Atoms of $\underline{1}$

Atom	x	Y	Z	в
01	.4265 (2)	.1756 (2)	3984 (4)	5.2 (1)
N1	.3049 (2)	.1395 (2)	1356 (5)	3.2 (1)
N2	.3364 (3)	0832 (2)	3322 (6)	5.7 (1)
CO1	.3791 (3)	.0585 (2)	0793 (6)	3.3 (1)
C02	.3445 (3)	.0357 (2)	.1450 (6)	3.4 (1)
C03	.2150 (3)	.0613 (2)	.1420 (6)	2.8 (1)
C04	.2144 (3)	.1555 (2)	.0271 (5)	2.8(1)
C05	.0890 (3)	.1772 (3)	0397 (7)	4.0 (1)
C06	.0142 (3)	.1842 (2)	.1578 (7)	4.4 (1)
C07	.0202 (3)	.0964 (3)	.2938 (6)	4.1 (1)
C08	.1468 (3)	.0679 (2)	.3457 (6)	3.7 (1)
C09	.3433 (3)	.1972 (2)	2904 (6)	4.1 (1)
C10	.2777 (4)	.2891 (2)	3176 (6)	5.8 (1)
C11	.3563 (3)	0217 (3)	2236 (6)	3.9 (1)
H011	.4639 (19)	.0790 (16)	1052 (43)	2.8(6)
H021	.3597 (21)	0261 (16)	.1865 (44)	2.6(7)
H022	.3890 (22)	.0849 (19)	.2540 (47)	4.2 (8)
H031	.1704 (20)	.0161 (16)	.0467 (41)	2.1 (6)
H041	.2443 (20)	.2065 (16)	.1509 (46)	3.2 (6)
H051	.0829 (22)	.2305 (18)	1040 (43)	3.9 (7)
H052	.0589 (27)	.1268 (18)	1353 (57)	5.5(9)
H061	0620 (23)	.2030 (18)	.1078 (53)	5.1 (8)
H062	.0422 (24)	.2460 (22)	.2506 (45)	6.2 (9)
H071	0165 (25)	.0448 (19)	.2158 (49)	5.0(10)
H072	0226 (31)	.1113 (24)	.4283 (69)	8.0 (11)
H081	.1432 (19)	.0054 (16)	.4164 (44)	3.4 (6)
H082	.1888 (20)	.1132 (15)	-4427 (45)	2.8 (6)
H101	.1905 (42)	.2713 (40)	4273 (98)	19.6 (20)
H102	.2641 (25)	.3179 (19)	1994 (51)	5.6 (8)
H103	.3181 (26)	.3235 (20)	4055 (56)	7.3 (9)

5348

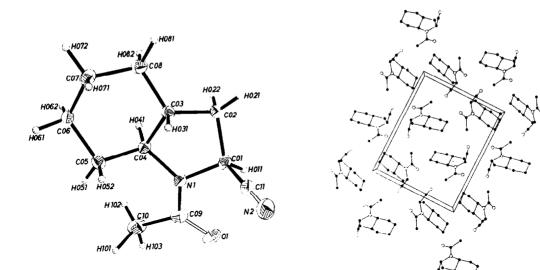
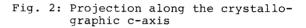



Fig. 1: ORTEP plot of 1

The analysis clearly demonstrates the configuration for this compound as shown in <u>1</u>. The five-membered ring has a twisted envelope conformation; C 01 is lying 0.252 Å above and C 02 0.458 Å below the plain of the other three atoms. As a consequence of the steric strain due to the trans ring juncture, the hybridisation of nitrogen atom N 1 is not exactly sp^2 , which causes it to be positioned 0.114 Å above the plain of its ligands. The sum of the bond angles around it (358.1°)differs markedly from 360°. The six-membered ring shows a largely undisturbed chair conformation. In the crystal, only the anti isomer of the amide bond is present; upon solution in DMSO it equilibrates to a mixture containing 40 % syn and 60 % anti isomer at 25°C as shown by NMR ⁹.

Acknowledgement: We are indebted to Dr. H.-W. Fehlhaber for recording and interpreting the NMR spectra.

References and Notes

1)	R. Henning and H. Urbach, Tetrahedron Lett., (1983)
2)	M. Karplus, <u>J. Chem. Phys.</u> , <u>30</u> , 11 (1959).
3)	Proton H O41 shows up as a doublet of triplets with $J_1 = 3Hz$ and $J_2 = 13 Hz$.
4)	N. C. Cohen, P. Colin and G. Lemoine, <u>Tetrahedron</u> $\underline{37}$, 1711 (1981).
5)	For the configuration shown in $\underline{1}$ the program generates two conformers of approximately equal energy corresponding to the rotamers of the amide bond. The dihedral angle H 011-C 01-C 02-H 021 is calculated to be -86.1° for the syn- and -88.1° for the anti-isomer. The isomer having a trans relationship between H 011 and H 041 has dihedral angles of 39.2° for H 011-C01-C 02-H 021 and 161.9° for H 011-C 01-C 02-H 022, which makes the signal of H 011 in the NMR a triplet ¹⁾ .
6)	The analysis was carried out with a computer driven Nicolet single crystal diffractometer using Mo-K _a radiation. (θ max. = 28 ^o ; 1066 reflections with intensities > 1 σ (I); R ₁ (unweighted)=0.100; the weighting scheme was restricted to the counting statistics; anisotropic temperature factors for all nonhydrogen atoms were used in the least squares refinement). The structure was solved with the direct phase determination method ⁷⁾ using the SHELXTL program ⁸⁾ , which was also used for all the other calculations.
7)	G. Germain, P. Main and M. M. Woolfson, Acta Cryst. B., 26 , 274 (1970), G. Germain and M. M. Woolfson, <u>ibid.</u> , 24 , 91 (1968).
8)	G. M. Sheldrick: SHELXTL, an integrated system for solving, refining

- G. M. Sheldrick: SHELXTL, an integrated system for solving, refining and displaying crystal structures from diffraction data, University of Goettingen, 1981.
- 9) The rotamers show the following characteristic absorptions: $syn-\underline{1}: \quad \delta = 5.03 (d. \mathbf{J}=7.3 Hz, H \ O11); \ 2.88 (dt, J_1=3 Hz, J_2=13 Hz, H \ O41)$ $anti-\underline{1}: \quad \delta = 4.80 (d. \mathbf{J}=7.3 Hz, H \ O11); \ 3.05 (dt, J_1=3 Hz, J_2=13 Hz, H \ O41).$

(Received in Germany 12 August 1983)

5350